Главная | Регистрация | Вход | RSSСреда, 04.12.2024, 21:42

Каменская школа

Меню сайта
Категории раздела
Итоговая аттестация 2011 [0]
Итоговая аттестация 2011
Информация разного характера [19]
Здесь находятся различных тематик статьи. А так же, все учебные, медицинские учреждения с их телефонами и адресами в городе Одессе.
Статьи 11 класса, выпуск 2011 [112] Статьи 10 класс 2011года [16]
Статьи 10 класс 2011года
Разработки уроков [6]
Разработки уроков
Статьи 9 класса 2011год [10]
Наука и образование [21] Тематические статьи [0]
Форма входа
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Каталог статей

Главная » Статьи » Статьи 9 класса 2011год

геометрические преобразования
ГЕОМЕТРИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ НА ПЛОСКОСТИ

ПАРАЛЛЕЛЬНЫЙ ПЕРЕНОС
Паралле́льный перено́с ― частный случай движения, при котором все точки пространства перемещаются в одном и том же направлении на одно и то же расстояние. Иначе, если M ― первоначальное, а M' ― смещенное положение точки, то вектор ― один и тот же для всех пар точек, соответствующих друг другу в данном преобразовании.

ПОВОРОТ
Поворо́т (враще́ние) — движение, при котором по крайней мере одна точка плоскости (пространства) остаётся неподвижной.
В физике нередко поворотом называется неполное вращение, или, наоборот, вращение рассматривается как частный вид поворота. Последнее определение более строго, поскольку понятие поворот охватывает значительно более широкую категорию движений, в том числе и такое, при котором траектория движущегося тела в избранной системе отсчёта представляет собой незамкнутую кривую.

ОСЕВАЯ СИММЕТРИЯ
Осева́я симме́три́я — тип симметрии, имеющий два несколько отличающихся определения:
• Отражательная симметрия. В математике (точнее, евклидовой геометрии) осевая симметрия — вид движения (зеркального отражения), при котором множеством неподвижных точек является прямая, называемая осью симметрии. Например, плоская фигура прямоугольник в пространстве осесимметрична и имеет 3 оси симметрии (две — в плоскости фигуры), если это не квадрат.
• Вращательная симметрия. В естественных науках под осевой симметрией понимают вращательную симметрию (другие термины — радиальная, аксиальная, лучевая симметрии) относительно поворотов вокруг прямой. При этом тело (фигуру, задачу, организм) называют осесимметричными, если они переходят в себя при любом (например, малом) повороте вокруг этой прямой. В этом случае, прямоугольник не будет осесимметричным телом, но конус будет.

ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Центра́льной симме́три́ей относительно точки A называют преобразование пространства, переводящее точку X в такую точку X′, что A — середина отрезка XX′. Центральная симметрия с центром в точке A обычно обозначается через ZA, в то время как обозначение SA можно перепутать с осевой симметрией. Фигура называется симметричной относительно точки A, если для каждой точки фигуры симметричная ей точка относительно точки A также принадлежит этой фигуре. Точка A называется центром симметрии фигуры. Говорят также, что фигура обладает центральной симметрией

ГОМОТЕТИЯ
Гомотетией c центром O и коэффициентом k ( ) называют преобразование плоскости (или пространства), переводящее точку X в точку X', обладающую тем свойством, что . Гомотетию с центром O и коэффициентом k часто обозначают через

В общем геометрические преобразования помогают в жизни в многих делах, от перестановке в квартире до планировки зданий!

Категория: Статьи 9 класса 2011год | Добавил: козырьбуба (13.05.2011) | Автор: Бубнов Сергей, Бокий Виктория E
Просмотров: 1310 | Комментарии: 1 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]

Copyright MyCorp © 2024
Создать бесплатный сайт с uCoz